Human Malaria in Immunocompromised Mice: New In Vivo Model for Chemotherapy Studies

Author:

Moreno A.1,Badell E.1,Van Rooijen N.2,Druilhe P.1

Affiliation:

1. Biomedical Parasitology Unit, Pasteur Institute, 75724 Paris Cedex 15, France,1 and

2. Department of Cell Biology, Faculty of Medicine, Free University, 1018 BT Amsterdam, The Netherlands2

Abstract

ABSTRACT We have recently designed a new Plasmodium falciparum mouse model and documented its potential for the study of immune effector mechanisms. In order to determine its value for drug studies, we evaluated its response to existing antimalarial drugs compared to that observed in humans. Immunocompromised BXN ( bg/bg xid/xid nu/nu ) mice were infected with either the sensitive NF54 strain or the multiresistant T24 strain and then treated with chloroquine, quinine, mefloquine, or dihydroartemisinin. A parallelism was observed between previously reported human responses and P. falciparum -parasitized human red blood cell (huRBC)–BXN mouse responses to classical antimalarial drugs, measured in terms of speed of decrease in parasitemia and of morphological alterations of the parasites. Mice infected with the sensitive strain were successfully cured after treatment with either chloroquine or mefloquine. In contrast, mice infected with the multiresistant strain failed to be cured by chloroquine or quinine but thereafter responded to dihydroartemisinin treatment. The speed of parasite clearance and the morphological alterations induced differed for each drug and matched previously reported observations, hence stressing the relevance of the model. These data thus suggest that P. falciparum -huRBC–BXN mice can provide a valuable in vivo system and should be included in the short list of animals that can be used for the evaluation of P. falciparum responses to drugs.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3