Regulation of tubulin levels and microtubule assembly in Saccharomyces cerevisiae: consequences of altered tubulin gene copy number.

Author:

Katz W,Weinstein B,Solomon F

Abstract

Microtubule organization in the cytoplasm is in part a function of the number and length of the assembled polymers. The intracellular concentration of tubulin could specify those parameters. Saccharomyces cerevisiae strains constructed with moderately decreased or increased copy numbers of tubulin genes provide an opportunity to study the cellular response to a steady-state change in tubulin concentration. We found no evidence of a mechanism for adjusting tubulin concentrations upward from a deficit, nor did we find a need for such a mechanism: cells with no more than 50% of the wild-type tubulin level were normal with respect to a series of microtubule-dependent properties. Strains with increased copies of both alpha- and beta-tubulin genes, or of alpha-tubulin genes alone, apparently did down regulate their tubulin levels. As a result, they contained greater than normal concentrations of tubulin but much less than predicted from the increase in gene number. Some of this down regulation occurred at the level of protein. These strains were also phenotypically normal. Cells could contain excess alpha-tubulin protein without detectable consequences, but perturbations resulting in excess beta-tubulin genes may have affected microtubule-dependent functions. All of the observed regulation of levels of tubulin can be explained as a response to toxicity associated with excess tubulin proteins, especially if beta-tubulin is much more toxic than alpha-tubulin.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3