Activation of a late H2B histone gene in blastula-stage sea urchin embryos by an unusual enhancer element located 3' of the gene.

Author:

Zhao A Z,Colin A M,Bell J,Baker M,Char B R,Maxson R

Abstract

In the sea urchin embryo, late histone genes are transcribed at low levels during cleavage and blastula formation and at substantially higher levels in later stages of embryogenesis. To investigate the molecular basis of the stage-specific expression of a late H2B histone gene, we injected mutant genes lacking portions of 5'- and 3'-flanking regions into Lytechinus pictus embryos and monitored their expression by RNase protection. A 200-bp region located 489 bp downstream of the mRNA 3' terminus was necessary for the increase in transcription of the late H2B gene at the mid-blastula stage of development. DNase I and methylation interference footprint analyses located only one factor-binding site in this region, and gel mobility shift experiments showed that the DNA-binding activity of this factor (designated H2B abp 1) paralleled the transcriptional activity of the L1 H2B gene. Additional mutagenesis and microinjection experiments located the activator element to a 32-bp DNA segment that includes the H2B abp 1-binding site. These experiments also showed that the 32-bp fragment functions independently of position and orientation and therefore has the hallmarks of an enhancer. That this fragment contains most or all of the L1 H2B gene transcription-stimulatory activity makes it unusual among enhancerlike elements, which generally consist of several clustered factor-binding sites that act additively or cooperatively to affect transcription. The nucleotide sequence of the L1 H2B enhancer element suggests that the trans-acting factor that interacts with it is a member of the antennapedia or engrailed class of homeodomain proteins.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3