Inducibility of the DNA repair gene encoding O6-methylguanine-DNA methyltransferase in mammalian cells by DNA-damaging treatments.

Author:

Fritz G,Tano K,Mitra S,Kaina B

Abstract

The inducibility of the mammalian O6-methylguanine-DNA methyltransferase (MGMT) gene encoding the MGMT protein (EC 2.1.1.63) responsible for removal of the procarcinogenic and promutagenic lesion O6-alkylguanine from DNA was examined by an analysis of transcription of the MGMT gene following exposure of repair-competent (Mex+) and repair-deficient (Mex-) cells to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). While human and rodent Mex- cells (CHO-9, V79, HeLa MR) showed no detectable MGMT mRNA despite the presence of the gene in their genome, the amount of it in several Mex+ lines (NIH 3T3, HeLa S3, HepG2) paralleled their MGMT activity. However, none of these cell lines showed an increase in the MGMT mRNA level after treatment with various concentrations of MNNG. In contrast, MNNG-treated rat hepatoma cells, H4IIE and FTO-2B, both Mex+, had three- to fivefold more MGMT mRNA than the corresponding untreated controls as measured 12 to 72 h after alkylation. N-Methyl-N-nitrosourea, methyl methanesulfonate, N-hydroxyethyl-N-chloroethylnitrosourea, UV light, and X rays caused a similar accumulation of MGMT mRNA in rat hepatoma cells. Studies with inhibitors of RNA and protein synthesis indicate that the induced increase in the amount of MGMT mRNA was due to enhanced transcription of the gene. Furthermore, they revealed the turnover of the MGMT mRNA to be relatively low (half-life, greater than 7 h). Mutagen-induced increase of transcription of MGMT mRNA in H4IIE cells was accompanied by elevation of MGMT repair activity and resulted in reduction of mutation frequency after a challenge dose of MNNG. Although induction of MGMT mRNA transcription has been observed in two rodent hepatoma cell lines so far, this appears to be the first demonstration of inducibility of a mammalian gene encoding a clearly define DNA repair function. The transcription activation of the MGMT gene protects cells from the mutagenic effects of methylating agents.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3