Author:
Sabara M,Gilchrist J E,Hudson G R,Babiuk L A
Abstract
The 38,200-molecular weight (unreduced)/41,900-molecular-weight (reduced) glycoprotein of bovine rotavirus, isolate C486, was identified as the major neutralizing antigen. This glycoprotein as well as the corresponding glycoprotein of another bovine rotavirus serotype also specifically attached to cell monolayers under normal conditions for virus adsorption in vitro. Further support for this glycoprotein being directly responsible for virus attachment to cells was that (i) infectious virus of both serotypes could compete with the C486 glycoprotein for cell surface receptors, and (ii) neutralizing monospecific antiserum and neutralizing monoclonal antibodies directed toward the glycoprotein could block this virus-cell interaction. Preliminary epitope mapping of the glycoprotein with monoclonal antibodies further localized the neutralization-adsorption domain to a peptide with an approximate molecular weight of 14,000. The effect of two protein modifications, glycosylation and disulfide bridging, on the reactivity of this peptide with antibodies and cell surface receptors was investigated. It was demonstrated that, whereas glycosylation did not appear to affect these reactivities, disulfide bridging seemed to be essential.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献