Affiliation:
1. Department of Medical Microbiology, School of Medicine, University of California, Davis, California 95616
Abstract
In vitro-maintained rabbit alveolar macrophages were infected with three strains of
Nocardia asteroides
. It was found that
N. asteroides
GUH-2 was resistant to macrophage killing, while
N. asteroides
14759 was intermediate in resistance, and
N. asteroides
10905 had little resistance to killing by macrophages. These observations correlated well with the data on relative virulence previously determined in mice. To establish the intracellular events leading to these differences, we determined the occurrence of phagosome-lysosome fusion in infected macrophages by both electron and fluorescent microscopic methods. It was found that the virulent strain GUH-2 inhibited phagosome-lysosome fusion; the intermediately virulent strain, 14759, partially inhibited fusion; and the less-virulent strain, 10905, was unable to inhibit fusion. In addition, electron microscopy of infected macrophages demonstrated that cells of the virulent strain, GUH-2, were not damaged, and only some of the cells of the intermediately virulent strain, 14759, were damaged, while most of the cells of the less virulent strain, 10905, exhibited considerable cellular destruction. These data indicated a direct correlation between the virulence of these organisms and their resistance to killing by alveolar macrophages, their lack of macrophage-induced ultrastructural damage, and their ability to inhibit phagosome-lysosome fusion. Thus, it appears that inhibition of phagosome-lysosome fusion in alveolar macrophages may be one of the mechanisms of pathogenicity of virulent strains of
N. asteroides.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献