hMOF Histone Acetyltransferase Is Required for Histone H4 Lysine 16 Acetylation in Mammalian Cells

Author:

Taipale Mikko1,Rea Stephen1,Richter Karsten2,Vilar Ana34,Lichter Peter2,Imhof Axel3,Akhtar Asifa1

Affiliation:

1. European Molecular Biology Laboratory, Gene Expression Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany

2. Division of Molecular Genetics (B060), Deutsches Krebsforschungszentrum, INF 280, 69120 Heidelberg, Germany

3. Adolf-Butenandt-Institut, Schillerstrasse 44, 80336 München, Germany

4. Cancer Epigenetics Laboratory, Molecular Pathology Programme, Spanish National Cancer Centre, Melchor Fernández Almagro 3, 28029 Madrid, Spain

Abstract

ABSTRACT Reversible histone acetylation plays an important role in regulation of chromatin structure and function. Here, we report that the human orthologue of Drosophila melanogaster MOF, hMOF, is a histone H4 lysine K16-specific acetyltransferase. hMOF is also required for this modification in mammalian cells. Knockdown of hMOF in HeLa and HepG2 cells causes a dramatic reduction of histone H4K16 acetylation as detected by Western blot analysis and mass spectrometric analysis of endogenous histones. We also provide evidence that, similar to the Drosophila dosage compensation system, hMOF and hMSL3 form a complex in mammalian cells. hMOF and hMSL3 small interfering RNA-treated cells also show dramatic nuclear morphological deformations, depicted by a polylobulated nuclear phenotype. Reduction of hMOF protein levels by RNA interference in HeLa cells also leads to accumulation of cells in the G 2 and M phases of the cell cycle. Treatment with specific inhibitors of the DNA damage response pathway reverts the cell cycle arrest caused by a reduction in hMOF protein levels. Furthermore, hMOF-depleted cells show an increased number of phospho-ATM and γH2AX foci and have an impaired repair response to ionizing radiation. Taken together, our data show that hMOF is required for histone H4 lysine 16 acetylation in mammalian cells and suggest that hMOF has a role in DNA damage response during cell cycle progression.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3