Reduced Affinity to and Inhibition by DKK1 Form a Common Mechanism by Which High Bone Mass-Associated Missense Mutations in LRP5 Affect Canonical Wnt Signaling

Author:

Ai Minrong1,Holmen Sheri L.2,Van Hul Wim3,Williams Bart O.2,Warman Matthew L.1

Affiliation:

1. Department of Genetics and Center for Human Genetics, Case School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio

2. Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, Michigan

3. Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium

Abstract

ABSTRACT The low-density-lipoprotein receptor-related protein 5 (LRP5), a coreceptor in the canonical Wnt signaling pathway, has been implicated in human disorders of low and high bone mass. Loss-of-function mutations cause the autosomal recessive osteoporosis-pseudoglioma syndrome, and heterozygous missense mutations in families segregating autosomal dominant high bone mass (HBM) phenotypes have been identified. We expressed seven different HBM-LRP5 missense mutations to delineate the mechanism by which they alter Wnt signaling. None of the mutations caused activation of the receptor in the absence of ligand. Each mutant receptor was able to reach the cell surface, albeit at differing amounts, and transduce exogenously supplied Wnt1 and Wnt3a signal. All HBM mutant proteins had reduced physical interaction with and reduced inhibition by DKK1. These data suggest that HBM mutant proteins can transit to the cell surface in sufficient quantity to transduce Wnt signal and that the likely mechanism for the HBM mutations' physiologic effects is via reduced affinity to and inhibition by DKK1.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3