Developmental Biology of Sporozoite-Host Interactions in Plasmodium falciparum Malaria: Implications for Vaccine Design

Author:

Garcia Javier E.12,Puentes Alvaro12,Patarroyo Manuel E.12

Affiliation:

1. Fundacion Instituto de Immunología de Colombia

2. Universidad Nacional de Colombia, Bogotá, Colombia

Abstract

SUMMARY The Plasmodium falciparum sporozoite infects different types of cells in a mosquito's salivary glands and human epithelial and Kuppfer cells and hepatocytes. These become differentiated later on, transforming themselves into the invasive red blood cell form, the merozoite. The ability of sporozoites to interact with different types of cells requires a wide variety of mechanisms allowing them to survive in both hosts: mobility, receptor-ligand interactions with different cellular receptors, and transformation and development into other invasive parasite forms, which are vitally important for parasite survival. Sporozoite complexity is reflected in the large quantity of proteins that can be expressed. Some of them have been extensively studied, such as CSP, TRAP, STARP, LSA-1, LSA-3, SALSA, SPECT1, SPECT2, MAEBL, and SPATR, due to their importance in infection and their potential use as vaccines. Our work has been focused on the search for the molecular mechanisms of parasite-host cellular receptor-ligand interactions by identifying amino acid sequences and the critical binding residues from these proteins relevant to parasite invasion. Once such sequences have been identified, it will be possible to modify them to induce a strong immune response against P. falciparum in the experimental Aotus monkey model. This all leads towards developing multistage, multicomponent, subunit-based vaccines that will be effective in eradicating or controlling malaria caused by P. falciparum .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,General Immunology and Microbiology,Epidemiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3