Perturbation of Cytochrome c Maturation Reveals Adaptability of the Respiratory Chain in Mycobacterium tuberculosis

Author:

Small Jennifer L.1,Park Sae Woong1,Kana Bavesh D.2,Ioerger Thomas R.3,Sacchettini James C.3,Ehrt Sabine1

Affiliation:

1. Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA

2. DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa

3. Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA

Abstract

ABSTRACT Mycobacterium tuberculosis depends on aerobic respiration for growth and utilizes an aa 3 -type cytochrome c oxidase for terminal electron transfer. Cytochrome c maturation in bacteria requires covalent attachment of heme to apocytochrome c , which occurs outside the cytoplasmic membrane. We demonstrate that in M. tuberculosis the thioredoxin-like protein Rv3673c, which we named CcsX, is required for heme insertion in cytochrome c . Inactivation of CcsX resulted in loss of c -type heme absorbance, impaired growth and virulence of M. tuberculosis , and induced cytochrome bd oxidase. This suggests that the bioenergetically less efficient bd oxidase can compensate for deficient cytochrome c oxidase activity, highlighting the flexibility of the M. tuberculosis respiratory chain. A spontaneous mutation in the active site of vitamin K epoxide reductase (VKOR) suppressed phenotypes of the CcsX mutant and abrogated the activity of the disulfide bond-dependent alkaline phosphatase, which shows that VKOR is the major disulfide bond catalyzing protein in the periplasm of M. tuberculosis. IMPORTANCE Mycobacterium tuberculosis requires oxygen for growth; however, the biogenesis of respiratory chain components in mycobacteria has not been explored. Here, we identified a periplasmic thioredoxin, CcsX, necessary for heme insertion into cytochrome c . We investigated the consequences of disrupting cytochrome c maturation (CCM) for growth and survival of M. tuberculosis in vitro and for its pathogenesis. Appearance of a second-site suppressor mutation in the periplasmic disulfide bond catalyzing protein VKOR indicates the strong selective pressure for a functional cytochrome c oxidase. The observation that M. tuberculosis is able to partially compensate for defective CCM by upregulation of the cytochrome bd oxidase exposes a functional role of this alternative terminal oxidase under normal aerobic conditions and during pathogenesis. This suggests that targeting both oxidases simultaneously might be required to effectively disrupt respiration in M. tuberculosis .

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3