SuhB Is a Regulator of Multiple Virulence Genes and Essential for Pathogenesis of Pseudomonas aeruginosa

Author:

Li Kewei1,Xu Chang2,Jin Yongxin1,Sun Ziyu1,Liu Chang1,Shi Jing1,Chen Gukui1,Chen Ronghao1,Jin Shouguang13,Wu Weihui1

Affiliation:

1. Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China

2. Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China

3. Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA

Abstract

ABSTRACT During initial colonization and chronic infection, pathogenic bacteria encounter distinct host environments. Adjusting gene expression accordingly is essential for the pathogenesis. Pseudomonas aeruginosa has evolved complicated regulatory networks to regulate different sets of virulence factors to facilitate colonization and persistence. The type III secretion system (T3SS) and motility are associated with acute infections, while biofilm formation and the type VI secretion system (T6SS) are associated with chronic persistence. To identify novel regulatory genes required for pathogenesis, we screened a P. aeruginosa transposon (Tn) insertion library and found suhB to be an essential gene for the T3SS gene expression. The expression of suhB was upregulated in a mouse acute lung infection model, and loss of suhB resulted in avirulence. Suppression of T3SS gene expression in the suhB mutant is linked to a defective translation of the T3SS master regulator, ExsA. Further studies demonstrated that suhB mutation led to the upregulation of GacA and its downstream small RNAs, RsmY and RsmZ, triggering T6SS expression and biofilm formation while inhibiting the T3SS. Our results demonstrate that an in vivo -inducible gene, suhB , reciprocally regulates genes associated with acute and chronic infections and plays an essential role in the pathogenesis of P. aeruginosa . IMPORTANCE A variety of bacterial pathogens, such as Pseudomonas aeruginosa , cause acute and chronic infections in humans. During infections, pathogens produce different sets of virulence genes for colonization, tissue damage, and dissemination and for countering host immune responses. Complex regulatory networks control the delicate tuning of gene expression in response to host environments to enable the survival and growth of invading pathogens. Here we identified suhB as a critical gene for the regulation of virulence factors in P. aeruginosa . The expression of suhB was upregulated during acute infection in an animal model, and mutation of suhB rendered P. aeruginosa avirulent. Moreover, we demonstrate that SuhB is required for the activation of virulence factors associated with acute infections while suppressing virulence factors associated with chronic infections. Our report provides new insights into the multilayered regulatory network of virulence genes in P. aeruginosa .

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3