Exploiting a rodent cell block for intrinsic resistance to HIV-1 gene expression in human T cells

Author:

Behrens Ryan T.12ORCID,Rajashekar Jyothi Krishnaswamy3,Bruce James W.124,Evans Edward L.12,Hansen Amelia M.12,Salazar-Quiroz Natalia3,Simons Lacy M.5,Ahlquist Paul124,Hultquist Judd F.5,Kumar Priti3,Sherer Nathan M.12ORCID

Affiliation:

1. McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison , Madison, Wisconsin, USA

2. Institute for Molecular Virology, University of Wisconsin-Madison , Madison, Wisconsin, USA

3. Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine , New Haven, Connecticut, USA

4. Morgridge Institute for Research, University of Wisconsin-Madison , Madison, Wisconsin, USA

5. Division of Infectious Diseases, Northwestern University Feinberg School of Medicine , Chicago, Illinois, USA

Abstract

ABSTRACT HIV-1 virion production is inefficient in cells derived from mice and other rodents reflecting cell-intrinsic defects to interactions between the HIV-1 auxiliary proteins Tat and Rev and host dependency factors CCNT1 (Cyclin T1) and XPO1 (exportin-1, also known as CRM1), respectively. In human cells, Tat binds CCNT1 to enhance viral RNA transcription and Rev recruits XPO1 to mediate the nuclear export of intron-containing viral RNA. In mouse cells, Tat’s interactions with CCNT1 are inefficient, mapped to a single species-specific residue Y261 instead of C261 in humans. Rev interacts poorly with murine XPO1, mapped to a trio of amino acids T411/V412/S414 instead of P411/M412/F414 in humans. To determine if these discrete species-specific regions of otherwise conserved housekeeping proteins represent viable targets for inhibiting HIV-1 replication in humans, herein, we employed CRISPR/Cas9 to recode the relevant regions of CCNT1 and XPO1 in human CD4+ T cells. While efforts to modify XPO1 were inconclusive, we generated isogenic CCNT1.C261Y cell lines exhibiting remarkable resistance to HIV-1 Tat, exhibiting near total inactivation of viral gene expression for all X4- and R5-tropic HIV-1 strains tested, as well as the more distantly related primate lentiviruses HIV-2 and SIV agm . Induction of viral reactivation using latency reversal agents (LRAs) was also restricted in CCNT1.C261Y cells. These studies validate a minor and naturally occurring, species-specific difference in a conserved human host factor as a compelling potential target for achieving broad-acting cell-intrinsic resistance to HIV’s post-integration phases. Importance Unlike humans, mice are unable to support HIV-1 infection. This is due, in part, to a constellation of defined minor, species-specific differences in conserved host proteins needed for viral gene expression. Here, we used precision CRISPR/Cas9 gene editing to engineer a “mousified” version of one such host protein, cyclin T1 (CCNT1), in human T cells. CCNT1 is essential for efficient HIV-1 transcription, making it an intriguing target for gene-based inactivation of virus replication. We show that isogenic cell lines engineered to encode CCNT1 bearing a single mouse-informed amino acid change (tyrosine in place of cysteine at position 261) exhibit potent, durable, and broad-spectrum resistance to HIV-1 and other pathogenic lentiviruses, and with no discernible impact on host cell biology. These results provide proof of concept for targeting CCNT1 in the context of one or more functional HIV-1 cure strategies.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Greater Milwaukee Foundation

HHS | NIH | National Cancer Institute

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of RNA structural plasticity in modulating HIV-1 genome packaging and translation;Proceedings of the National Academy of Sciences;2024-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3