Affiliation:
1. Department of Immunology, The Scripps Research Institute, La Jolla, California 92037
Abstract
ABSTRACT
We used retrovirus insertion-mediated random mutagenesis to generate tumor necrosis factor (TNF)-resistant lines from L929 cells. Using this approach, we discovered that the plasma membrane calcium ATPase 4 (PMCA4) is required for TNF-induced cell death in L929 cells. Under basal conditions, PMCA4-deficient (PMCA
mut
) cells have a normal phenotype. However, stimulation with TNF induces an abnormal increase in the intracellular calcium concentration ([Ca
2+
]
i
). The substantially elevated [Ca
2+
]
i
caused resistance to TNF-induced cell death. We found that an increase in the total volume of acidic compartments (VAC), mainly constituted by lysosomes, is a common event in cell death caused by a variety of agonists. The increased [Ca
2+
]
i
in PMCA
mut
cells promoted lysosome exocytosis, which, at least in part, accounted for the inhibition of TNF-induced increase in VAC and cell death. Promoting lysosome exocytosis by calcium inhibited TNF-induced cell death in wild-type L929 cells, while inhibition of lysosome exocytosis or increase of VAC by sucrose restored the sensitivity of PMCA
mut
cells to TNF-induced cell death. Thus, increase of the volume of acidic compartment is a part of the cell death process, and the antideath effect of calcium is mediated, at least in part, by inhibition of the TNF-induced increase in VAC.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献