Specific Double-Stranded RNA Interference in Undifferentiated Mouse Embryonic Stem Cells

Author:

Yang Shicheng1,Tutton Stephen1,Pierce Eric2,Yoon Kyonggeun1

Affiliation:

1. Department of Dermatology and Cutaneous Biology and Department of Biochemistry and Molecular Pharmacology, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, and Jefferson Medical College, 1 and

2. F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania School of Medicine, 2 Philadelphia, Pennsylvania

Abstract

ABSTRACT Specific mRNA degradation mediated by double-stranded RNA (dsRNA) interference (RNAi) is a powerful way of suppressing gene expression in plants, nematodes, and fungal, insect, and protozoan systems. However, only a few cases of RNAi have been reported in mammalian systems. Here, we investigated the feasibility of the RNAi strategy in several mammalian cells by using the enhanced green fluorescent protein gene as a target, either by in situ production of dsRNA from transient transfection of a plasmid harboring a 547-bp inverted repeat or by direct transfection of dsRNA made by in vitro transcription. Several mammalian cells including differentiated embryonic stem (ES) cells did not exhibit specific RNAi in transient transfection. This long dsRNA, however, was capable of inducing a sequence-specific RNAi for the episomal and chromosomal target gene in undifferentiated ES cells. dsRNA at 8.3 nM decreased the cognate gene expression up to 70%. However, RNAi activity was not permanent because it was more pronounced in early time points and diminished 5 days after transfection. Thus, undifferentiated ES cells may lack the interferon response, similar to mouse embryos and oocytes. Regardless of their apparent RNAi activity, however, cytoplasmic extracts from mammalian cells produced a small RNA of 21 to 22 nucleotides from the long dsRNA. Our results suggest that mammalian cells may possess RNAi activity but nonspecific activation of the interferon response by longer dsRNA may mask the specific RNAi. The findings offer an opportunity to use dsRNA for inhibition of gene expression in ES cells to study differentiation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3