Mitochondrially Associated Hepatitis B Virus X Protein Constitutively Activates Transcription Factors STAT-3 and NF-κB via Oxidative Stress

Author:

Waris Gulam1,Huh Kyung-Won1,Siddiqui Aleem1

Affiliation:

1. Department of Microbiology and Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262

Abstract

ABSTRACT The hepatitis B virus X protein (HBx) plays essential roles in viral replication and the generation of hepatocellular carcinoma. In spite of a large number of suggestive cellular targets and functions, a clear picture of its mechanism(s) of action has remained elusive. In this report, we continue to characterize its recently described mitochondrial association and further examine its impact on mitochondrial functions. HBx was previously shown to bind to a voltage-dependent anion channel (VDAC3) and alter the mitochondrial transmembrane potential (ΔΨ m ). Here we show that, as a consequence of association with mitochondria, HBx constitutively induces activation of transcription factors, which include STAT-3 and NF-κB. This induction of activation was sensitive to the antioxidants N -acetyl l -cysteine and pyrrolidine dithiocarbamate, as well as to overexpression of Mn-superoxide dismutase. These results therefore implicate a potential role of reactive oxygen species (ROS) in a process that ultimately leads to the activation of STAT-3 and NF-κB. Evidence is also presented for the HBx-induced generation of ROS. The ability of HBx to induce the activation of STAT-3 and NF-κB was demonstrated by mobility shift and reporter gene expression assays with lysates from HBx-transfected HepG2 cells. A C-terminal HBx deletion mutant, HBxΔ99, failed to bind VDAC3 and activate STAT-3 and NF-κB. These studies shed new light on the physiological significance of HBx's mitochondrial association and its role in inducing oxidative stress which can contribute to the liver disease pathogenesis associated with the hepatitis B virus infection.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3