Author:
Ariyachet Chaiyaboot,Solis Norma V.,Liu Yaoping,Prasadarao Nemani V.,Filler Scott G.,McBride Anne E.
Abstract
ABSTRACTCandida albicanscauses both mucosal and disseminated infections, and its capacity to grow as both yeast and hyphae is a key virulence factor. Hyphal formation is a type of polarized growth, and members of the SR (serine-arginine) family of RNA-binding proteins influence polarized growth of bothSaccharomyces cerevisiaeandAspergillus nidulans. Therefore, we investigated whether SR-like proteins affect filamentous growth and virulence ofC. albicans. BLAST searches withS. cerevisiaeSR-like protein Npl3 (ScNpl3) identified twoC. albicansproteins: CaNpl3, an apparent ScNpl3 ortholog, and Slr1, anotherSR-likeRNA-binding protein with no closeS. cerevisiaeortholog. Whereas ScNpl3 was critical for growth, deletion ofNPL3inC. albicansresulted in few phenotypic changes. In contrast, theslr1Δ/Δ mutant had a reduced growth ratein vitro, decreased filamentation, and impaired capacity to damage epithelial and endothelial cellsin vitro. Mice infected intravenously with theslr1Δ/Δ mutant strain had significantly prolonged survival compared to that of mice infected with the wild-type orslr1Δ/Δ mutant complemented withSLR1(slr1Δ/Δ+SLR1) strain, without a concomitant decrease in kidney fungal burden. Histopathology, however, revealed differential localization ofslr1Δ/Δ hyphal and yeast morphologies within the kidney. Mice infected withslr1Δ/Δ cells also had an increased brain fungal burden, which correlated with increased invasion of brain, but not umbilical vein, endothelial cellsin vitro. The enhanced brain endothelial cell invasion was likely due to the increased surface exposure of the Als3 adhesin onslr1Δ/Δ cells. Our results indicate that Slr1 is an SR-like protein that influencesC. albicansgrowth, filamentation, host cell interactions, and virulence.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献