A Novel Amidase (Half-Amidase) for Half-Amide Hydrolysis Involved in the Bacterial Metabolism of Cyclic Imides

Author:

Soong Chee-Leong1,Ogawa Jun1,Shimizu Sakayu1

Affiliation:

1. Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

Abstract

ABSTRACT A novel amidase involved in bacterial cyclic imide metabolism was purified from Blastobacter sp. strain A17p-4. The enzyme physiologically functions in the second step of cyclic imide degradation, i.e., the hydrolysis of monoamidated dicarboxylates (half-amides) to dicarboxylates and ammonia. Enzyme production was enhanced by cyclic imides such as succinimide and glutarimide but not by amide compounds which are conventional substrates and inducers of known amidases. The purified amidase showed high catalytic efficiency toward half-amides such as succinamic acid ( K m = 6.2 mM; k cat = 5.76 s −1 ) and glutaramic acid ( K m = 2.8 mM; k cat = 2.23 s −1 ). However, the substrates of known amidases such as short-chain (C 2 to C 4 ) aliphatic amides, long-chain (above C 16 ) aliphatic amides, amino acid amides, aliphatic diamides, α-keto acid amides, N -carbamoyl amino acids, and aliphatic ureides were not substrates for the enzyme. Based on its high specificity toward half-amides, the enzyme was named half-amidase. This half-amidase exists as a monomer with an M r of 48,000 and was strongly inhibited by heavy metal ions and sulfhydryl reagents.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3