Affiliation:
1. Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada (Valencia),1 and
2. Instituto de Tecnologia Agroalimentaria, Laboratorio de Producción Vegetal, Universitat de Girona, 17071 Girona,2 Spain
Abstract
ABSTRACT
A novel method, which involves a nested PCR in a single closed tube, was developed for the sensitive detection of
Erwinia amylovora
in plant material. The external and internal primer pairs used had different annealing temperatures and directed the amplification of a specific DNA fragment from plasmid pEA29. The procedure involved two consecutive PCRs, the first of which was performed at a higher annealing temperature that allowed amplification only by the external primer pair. Using pure cultures of
E. amylovora
, the sensitivity of the nested PCR in one tube was similar to that of a standard nested PCR in two tubes. The specificity and sensitivity were greater than those of standard PCR procedures that used a single primer pair. The presence of inhibitors in plant material, very common in
E. amylovora
hosts, is overcome with this system in combination with a simple DNA extraction protocol because it eliminates many of the inhibitory compounds. In addition, it needs a very small sample volume (1 μl of DNA extracted). With 83 samples of naturally infected material, this method achieved better results than any other PCR technique: standard PCR detected 55% of positive samples, two-tube nested PCR detected 71% of positive samples, and nested PCR in a single closed tube detected 78% of positive samples. When analyzing asymptomatic plant material, the number of positive samples detected by the developed nested PCR was also the highest, compared with the PCR protocols indicated previously (17, 20, and 25% of 251 samples analyzed, respectively). This method is proposed for the detection of endophytic and epiphytic populations of
E. amylovora
in epidemiological studies and for routine use in quarantine surveys, due to its high sensitivity, specificity, speed, and simplicity.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
127 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献