New Plasmid-Mediated Quinolone Resistance Gene, qnrC , Found in a Clinical Isolate of Proteus mirabilis

Author:

Wang Minghua1,Guo Qinglan1,Xu Xiaogang1,Wang Xiaoying1,Ye Xinyu1,Wu Shi1,Hooper David C.2,Wang Minggui13

Affiliation:

1. Institute of Antibiotics, Huashan Hospital

2. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts

3. Institute of Biomedical Sciences, Fudan University, Shanghai 200040, China

Abstract

ABSTRACT Since the discovery of qnrA in 1998, two additional qnr genes, qnrB and qnrS , have been described. These three plasmid-mediated genes contribute to quinolone resistance in gram-negative pathogens worldwide. A clinical strain of Proteus mirabilis was isolated from an outpatient with a urinary tract infection and was susceptible to most antimicrobials but resistant to ampicillin, sulfamethoxazole, and trimethoprim. Plasmid pHS10, harbored by this strain, was transferred to azide-resistant Escherichia coli J53 by conjugation. A transconjugant with pHS10 had low-level quinolone resistance but was negative by PCR for the known qnr genes, aac(6′)-Ib-cr and qepA . The ciprofloxacin MIC for the clinical strain and a J53/pHS10 transconjugant was 0.25 μg/ml, representing an increase of 32-fold relative to that for the recipient, J53. The plasmid was digested with HindIII, and a 4.4-kb DNA fragment containing the new gene was cloned into pUC18 and transformed into E. coli TOP10. Sequencing showed that the responsible 666-bp gene, designated qnrC , encoded a 221-amino-acid protein, QnrC, which shared 64%, 42%, 59%, and 43% amino acid identity with QnrA1, QnrB1, QnrS1, and QnrD, respectively. Upstream of qnrC there existed a new IS 3 family insertion sequence, IS Pmi1 , which encoded a frameshifted transposase. qnrC could not be detected by PCR, however, in 2,020 strains of Enterobacteriaceae . A new quinolone resistance gene, qnrC , was thus characterized from plasmid pHS10 carried by a clinical isolate of P . mirabilis .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3