Relationship between Microorganisms Inhabiting Alkaline Siliceous Hot Spring Mat Communities and Overflowing Water

Author:

Becraft Eric D.12,Jackson Benjamin D.34,Nowack Shane35,Klapper Isaac36,Ward David M.1ORCID

Affiliation:

1. Land Resources and Environmental Sciences Department, Montana State University, Bozeman, Montana, USA

2. Department of Biology, University of North Alabama, Florence, Alabama, USA

3. Department of Mathematical Sciences, Montana State University, Bozeman, Montana, USA

4. Department of Mathematics, Walla Walla University, College Place, Washington, USA

5. InterSystems Corporation, Cambridge, Massachusetts, USA

6. Department of Mathematics, Temple University, Philadelphia, Pennsylvania, USA

Abstract

In flowing aquatic systems, cell erosion and deposition are important to the dispersal of cells from one location to another. Very little is known about microbial dispersal and the physical processes that underlie it. This study demonstrates its importance to colonization of downstream surfaces and especially to the recolonization and functioning of disturbed sites. Ecological systems in flowing environments are often, roughly speaking, pseudosteady, in that nutrients enter the system and by-products leave at relatively steady rates. Over time, material inputs and outputs must balance. Measurements of input fluxes (e.g., growth rates and proxies, such as photosynthesis rates) are frequent. However, erosion and deposition of cells are seldom measured and ecological significance is sometimes neglected. The importance of these parameters is immediately evident in any attempt to construct a model of long-time community behavior, as spatial ecological structure is significantly impacted and can be dominated by migration of organisms, even in small numbers.

Funder

National Science Foundation

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3