Genomic and Transcriptomic Insights into How Bacteria Withstand High Concentrations of Benzalkonium Chloride Biocides

Author:

Kim Minjae1,Hatt Janet K.1,Weigand Michael R.1ORCID,Krishnan Raj1,Pavlostathis Spyros G.1,Konstantinidis Konstantinos T.12

Affiliation:

1. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA

2. School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA

Abstract

ABSTRACT Benzalkonium chlorides (BAC) are commonly used biocides in broad-spectrum disinfectant solutions. How microorganisms cope with BAC exposure remains poorly understood, despite its importance for disinfection and disinfectant-induced antibiotic resistance. To provide insights into these issues, we exposed two isolates of an opportunistic pathogen, Pseudomonas aeruginosa , to increasing concentrations of BAC. One isolate was preadapted to BAC, as it originated from a bioreactor fed with subinhibitory concentrations of BAC for 3 years, while the other originated from a bioreactor that received no BAC. Replicated populations of both isolates were able to survive high concentrations of BAC, up to 1,200 and 1,600 mg/liter for the non- and preadapted strains, respectively, exceeding typical application doses. Transcriptome sequencing (RNA-seq) analysis revealed upregulation of efflux pump genes and decreased expression of porins related to BAC transport as well as reduced growth rate. Increased expression of spermidine (a polycation) synthase genes and mutations in the pmrB (polymyxin resistance) gene, which cause a reduction in membrane negative charge, suggested that a major adaptation to exposure to the cationic surfactant BAC was to actively stabilize cell surface charge. Collectively, these results revealed that P. aeruginosa adapts to BAC exposure by a combination of mechanisms and provided genetic markers to monitor BAC-resistant organisms that may have applications in the practice of disinfection. IMPORTANCE BAC are widely used as biocides in disinfectant solutions, food-processing lines, domestic households, and health care facilities. Due to their wide use and mode of action, there has been rising concern that BAC may promote antibiotic resistance. Consistent with this idea, at least 40 outbreaks have been attributed to infection by disinfectant- and antibiotic-resistant pathogens such as P. aeruginosa . However, the underlying molecular mechanisms that bacteria use to deal with BAC exposure remain poorly elucidated. Elucidating these mechanisms may be important for monitoring and limiting the spread of disinfectant-resistant pathogens. Using an integrated approach that combined genomics and transcriptomics with physiological characterization of BAC-adapted isolates, this study provided a comprehensive understanding of the BAC resistance mechanisms in P. aeruginosa . Our findings also revealed potential genetic markers to detect and monitor the abundance of BAC-resistant pathogens across clinical or environmental settings. This work contributes new knowledge about high concentrations of benzalkonium chlorides disinfectants-resistance mechanisms at the whole-cell genomic and transcriptomic level.

Funder

MoSTR | National Science Foundation

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3