Saccharomyces cerevisiae RNase H(35) Functions in RNA Primer Removal during Lagging-Strand DNA Synthesis, Most Efficiently in Cooperation with Rad27 Nuclease

Author:

Qiu Junzhuan1,Qian Ying1,Frank Peter2,Wintersberger Ulrike2,Shen Binghui1

Affiliation:

1. Department of Cell and Tumor Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, 1 and

2. Department of Molecular Genetics, Institute of Tumor Biology and Cancer Research, University of Vienna, A-1090 Vienna, Austria2

Abstract

ABSTRACT Correct removal of RNA primers of Okazaki fragments during lagging-strand DNA synthesis is a critical process for the maintenance of genome integrity. Disturbance of this process has severe mutagenic consequences and could contribute to the development of cancer. The role of the mammalian nucleases RNase HI and FEN-1 in RNA primer removal has been substantiated by several studies. Recently, RNase H(35), the Saccharomyces cerevisiae homologue of mammalian RNase HI, was identified and its possible role in DNA replication was proposed (P. Frank, C. Braunshofer-Reiter, and U. Wintersberger, FEBS Lett. 421:23–26, 1998). This led to the possibility of moving to the genetically powerful yeast system for studying the homologues of RNase HI and FEN-1, i.e., RNase H(35) and Rad27p, respectively. In this study, we have biochemically defined the substrate specificities and the cooperative as well as independent cleavage mechanisms of S. cerevisiae RNase H(35) and Rad27 nuclease by using Okazaki fragment model substrates. We have also determined the additive and compensatory pathological effects of gene deletion and overexpression of these two enzymes. Furthermore, the mutagenic consequences of the nuclease deficiencies have been analyzed. Based on our findings, we suggest that three alternative RNA primer removal pathways of different efficiencies involve RNase H(35) and Rad27 nucleases in yeast.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3