Influence of Starvation for Methionine and Other Amino Acids on Subsequent Bacterial Deoxyribonucleic Acid Replication

Author:

Billen Daniel1,Hewitt Roger1

Affiliation:

1. Section of Radiation Biology, Department of Biology, The University of Texas M. D. Anderson Hospital and Tumor Institute, Houston, Texas

Abstract

Billen, Daniel (University of Texas M. D. Anderson Hospital and Tumor Institute, Houston, Tex.), and Roger Hewitt . Influence of starvation for methionine and other amino acids on subsequent bacterial deoxyribonucleic acid replication. J. Bacteriol. 92: 609–617. 1966.—A study has been made of the subsequent replicative fate of deoxyribonucleic acid (DNA) synthesized during amino acid starvation by several multiauxotrophic strains of Escherichia coli . Using radioisotopic and density labels and a procedure whereby total cellular DNA is analyzed, we have confirmed and extended a recent report that the DNA made during amino acid starvation behaves anomalously during subsequent DNA replication. When 5-bromouracil (BU) serves as the density lable, 40% or more of the DNA synthesized during starvation will subsequently fail to replicate during three cell generations. Selective amino acid effects were noted. In two methionine-requiring bacteria, methionine deprivation appeared to be of singular importance in influencing the subsequent replicative fate of the DNA made in its absence. When a non-BU density label (N 15 , C 13 ) was utilized, the effects of amino acid starvation were less obvious. Although the DNA synthesized during complete amino acid starvation in a methionine-requiring E. coli was subsequently more slowly replicated, most of the DNA was finally duplicated during three generations of growth. If methionine was present during starvation for other required amino acids, the subsequent replication rate of the DNA synthesized during this time was more nearly normal, and complete replication was observed. The results have been interpreted as indicating that DNA synthesized during amino acid starvation, and especially during methionine starvation, is somehow altered, and that BU substitution for thymine may interfere with the restoration of such DNA to its replicative state.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3