Transcriptional Activation by NF-κB Requires Multiple Coactivators

Author:

Sheppard Kelly-Ann1,Rose David W.2,Haque Zaffar K.1,Kurokawa Riki3,McInerney Eileen4,Westin Stefan3,Thanos Dimitris5,Rosenfeld Michael G.4,Glass Christopher K.3,Collins Tucker1

Affiliation:

1. Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 1 ;

2. Department of Medicine and Whittier Diabetes Program,2

3. Division of Cellular and Molecular Medicine, Department of Medicine, 3 and

4. Howard Hughes Medical Institute, 4 University of California—San Diego, La Jolla, California 92093; and

5. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 100325

Abstract

ABSTRACT Nuclear factor-κB (NF-κB) plays a role in the transcriptional regulation of genes involved in inflammation and cell survival. In this report we demonstrate that NF-κB recruits a coactivator complex that has striking similarities to that recruited by nuclear receptors. Inactivation of either cyclic AMP response element binding protein (CREB)-binding protein (CBP), members of the p160 family of coactivators, or the CBP-associated factor (p/CAF) by nuclear antibody microinjection prevents NF-κB-dependent transactivation. Like nuclear receptor-dependent gene expression, NF-κB-dependent gene expression requires specific LXXLL motifs in one of the p160 family members, and enhancement of NF-κB activity requires the histone acetyltransferase (HAT) activity of p/CAF but not that of CBP. This coactivator complex is differentially recruited by members of the Rel family. The p50 homodimer fails to recruit coactivators, although the p50-p65 heterodimeric form of the transcription factor assembles the integrator complex. These findings provide new mechanistic insights into how this family of dimeric transcription factors has a differential effect on gene expression.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3