Affiliation:
1. Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
2. Department of Microbiology, University of Georgia, Athens, Georgia, USA
3. Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
Abstract
ABSTRACT
Bacterial bioluminescence is taxonomically restricted to certain proteobacteria, many of which belong to the
Vibrionaceae
. In the most well-studied cases, pheromone signaling plays a key role in regulation of light production. However, previous reports have indicated that certain
Photobacterium
strains do not use this regulatory method for controlling luminescence. In this study, we combined genome sequencing with genetic approaches to characterize the regulation of luminescence in
Photobacterium leiognathi
strain KNH6, an extremely bright isolate. Using transposon mutagenesis and screening for decreased luminescence, we identified insertions in genes encoding components necessary for the luciferase reaction (
lux
,
lum
, and
rib
operons) as well as in nine other loci. These additional loci encode gene products predicted to be involved in the tricarboxylic acid (TCA) cycle, DNA and RNA metabolism, transcriptional regulation, and the synthesis of cytochrome
c
, peptidoglycan, and fatty acids. The mutagenesis screen did not identify any mutants with disruptions of predicted pheromone-related loci. Using targeted gene insertional disruptions, we demonstrate that under the growth conditions tested, luminescence levels do not appear to be controlled through canonical pheromone signaling systems in this strain.
IMPORTANCE
Despite the long-standing interest in luminous bacteria, outside a few model organisms, little is known about the regulation and function of luminescence. Light-producing marine bacteria are widely distributed and have diverse lifestyles, suggesting that the control and significance of luminescence may be similarly diverse. In this study, we apply genetic tools to the study of regulation of light production in the extremely bright isolate
Photobacterium leiognathi
KNH6. Our results suggest an unusual lack of canonical pheromone-mediated control of luminescence and contribute to a better understanding of alternative strategies for regulation of a key bacterial behavior. These experiments lay the groundwork for further study of the regulation and role of bioluminescence in
P. leiognathi
.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献