Contrasting Life Strategies of Viruses that Infect Photo- and Heterotrophic Bacteria, as Revealed by Viral Tagging

Author:

Deng Li1,Gregory Ann1,Yilmaz Suzan2,Poulos Bonnie T.1,Hugenholtz Philip23,Sullivan Matthew B.1

Affiliation:

1. Ecology and Evolutionary Biology Department, University of Arizona, Tucson, Arizona, USA

2. Microbial Ecology Program, DOE Joint Genome Institute, Walnut Creek, California, USA

3. Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences & Institute for Molecular Bioscience, the University of Queensland, St. Lucia, Queensland, Australia

Abstract

ABSTRACT Ocean viruses are ubiquitous and abundant and play important roles in global biogeochemical cycles by means of their mortality, horizontal gene transfer, and manipulation of host metabolism. However, the obstacles involved in linking viruses to their hosts in a high-throughput manner bottlenecks our ability to understand virus-host interactions in complex communities. We have developed a method called viral tagging (VT), which combines mixtures of host cells and fluorescent viruses with flow cytometry. We investigated multiple viruses which infect each of two model marine bacteria that represent the slow-growing, photoautotrophic genus Synechococcus ( Cyanobacteria ) and the fast-growing, heterotrophic genus Pseudoalteromonas ( Gammaproteobacteria ). Overall, viral tagging results for viral infection were consistent with plaque and liquid infection assays for cyanobacterial myo-, podo- and siphoviruses and some (myo- and podoviruses) but not all (four siphoviruses) heterotrophic bacterial viruses. Virus-tagged Pseudoalteromonas organisms were proportional to the added viruses under varied infection conditions (virus-bacterium ratios), while no more than 50% of the Synechococcus organisms were virus tagged even at viral abundances that exceeded (5 to 10×) that of their hosts. Further, we found that host growth phase minimally impacts the fraction of virus-tagged Synechococcus organisms while greatly affecting phage adsorption to Pseudoalteromonas . Together these findings suggest that at least two contrasting viral life strategies exist in the oceans and that they likely reflect adaptation to their host microbes. Looking forward to the point at which the virus-tagging signature is well understood (e.g., for Synechococcus ), application to natural communities should begin to provide population genomic data at the proper scale for predictively modeling two of the most abundant biological entities on Earth. IMPORTANCE Viral study suffers from an inability to link viruses to hosts en masse , and yet delineating “who infects whom” is fundamental to viral ecology and predictive modeling. This article describes viral tagging—a high-throughput method to investigate virus-host interactions by combining the fluorescent labeling of viruses for “tagging” host cells that can be analyzed and sorted using flow cytometry. Two cultivated hosts (the cyanobacterium Synechococcus and the gammaproteobacterium Pseudoalteromonas ) and their viruses (podo-, myo-, and siphoviruses) were investigated to validate the method. These lab-based experiments indicate that for most virus-host pairings, VT (viral tagging) adsorption is equivalent to traditional infection by liquid and plaque assays, with the exceptions being confined to promiscuous adsorption by Pseudoalteromonas siphoviruses. These experiments also reveal variability in life strategies across these oceanic virus-host systems with respect to infection conditions and host growth status, which highlights the need for further model system characterization to break open this virus-host interaction “black box.”

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3