Transfer of Viral Communities between Human Individuals during Fecal Microbiota Transplantation

Author:

Chehoud Christel1,Dryga Anatoly12,Hwang Young1,Nagy-Szakal Dorottya3,Hollister Emily B.45,Luna Ruth Ann4,Versalovic James45,Kellermayer Richard3,Bushman Frederic D.1

Affiliation:

1. Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA

2. Department of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia

3. Section of Pediatric Gastroenterology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, USDA/ARS Children’s Nutrition Research Center, Houston, Texas, USA

4. Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA

5. Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA

Abstract

ABSTRACT Fecal microbiota transplantation (FMT) is a highly effective treatment for refractory Clostridium difficile infections. However, concerns persist about unwanted cotransfer of pathogenic microbes such as viruses. Here we studed FMT from a single healthy human donor to three pediatric ulcerative colitis patients, each of whom received a course of 22 to 30 FMT treatments. Viral particles were purified from donor and recipient stool samples and sequenced; the reads were then assembled into contigs corresponding to viral genomes or partial genomes. Transfer of selected viruses was confirmed by quantitative PCR. Viral contigs present in the donor could be readily detected in recipients, with up to 32 different donor viral contigs appearing in a recipient sample. Reassuringly, none of these were viruses are known to replicate on human cells. Instead, viral contigs either scored as bacteriophage or could not be attributed taxonomically, suggestive of unstudied phage. The two most frequently transferred gene types were associated with temperate-phage replication. In addition, members of Siphoviridae , the group of typically temperate phages that includes phage lambda, were found to be transferred with significantly greater efficiency than other groups. On the basis of these findings, we propose that the temperate-phage replication style may promote efficient phage transfer between human individuals. In summary, we documented transfer of multiple viral lineages between human individuals through FMT, but in this case series, none were from viral groups known to infect human cells. IMPORTANCE Transfer of whole communities of viruses between humans has rarely been studied but is of likely medical importance. Here we studied fecal microbiota transplantation (FMT), a highly successful treatment for relapsing Clostridium difficile infection and, potentially, other gastrointestinal (GI) diseases. We investigated the transfer of viral communities during FMT and documented transfer of multiple viral lineages between humans. None of these were viruses that replicated on animal cells or that are known to be pathogenic. We found that temperate bacteriophage, which form stable associations with their hosts, were significantly more likely to be transferred during FMT. This supports a model in which the viral temperate replication style may have evolved in part to support efficient viral transmission between environments.

Funder

PennCHOP Microbiome Program

Gutsy Kids Fund

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3