Mechanism of selective translation of vaccinia virus mRNAs: differential role of poly(A) and initiation factors in the translation of viral and cellular mRNAs

Author:

Bablanian R1,Goswami S K1,Esteban M1,Banerjee A K1,Merrick W C1

Affiliation:

1. Department of Microbiology and Immunology, SUNY Health Science Center, Brooklyn 11203.

Abstract

We have recently demonstrated that the poly(A) moieties of short RNAs obtained from both in vitro transcription and from vaccinia virus (VV)-infected cells exhibit dissimilar effects on the in vitro translation of cellular and VV mRNAs (R. Bablanian, G. Coppola, P. Masters, and A. K. Banerjee, Virology 148:375-380, 1986; M. J. Su and R. Bablanian, Virology 179:679-693, 1990). In the present study, we have investigated the roles of poly(A), m7GTP, and initiation factors in the mechanism of selective translation of VV mRNAs. The effects of unfractionated poly(A) [termed poly(A)un, with various chain lengths up to 3,000 nucleotides] and a 150- to 300-nucleotide fraction of synthetic poly(A) [termed poly(A)150-300] on the translation of HeLa cell mRNAs and early and late VV mRNAs were studied. Both the poly(A)un and the poly(A)150-300 completely inhibited the translation of HeLa cell mRNAs obtained from total cytoplasmic RNA in the nuclease-treated reticulocyte lysates. Viral mRNAs from total cytoplasmic RNA also were slightly inhibited (15 to 38%) by the poly(A)un, whereas the poly(A)150-300 had no significant effect on their translation. The translation of oligo(dT)-cellulose-selected HeLa mRNAs was as sensitive to inhibition by poly(A)150-300 as the mRNAs found in total cytoplasmic RNA. However, the translations of oligo(dT)-cellulose-selected viral mRNAs become more sensitive to the inhibitory effect of poly(A)150-300 than the translations of viral mRNAs found in the total cytoplasmic RNA. Both HeLa and VV mRNAs became more resistant to the poly(A)-mediated inhibition when these mRNAs were deadenylated, but the relative resistance to inhibition by poly(A)150-300 of deadenylated VV mRNAs was much greater than that of HeLa cell mRNAs. The translation of VV mRNAs was significantly less inhibited than the translation of HeLa mRNAs when the cap analog, m7GTP, was added to the cell-free system. The inhibition of HeLa cell mRNA translation by both poly(A)un and poly(A)150-300 was completely restored when poly(A)-binding protein (PAB) was added to the cell-free translational system. The addition of eukaryotic initiation factor 4A (eIF-4A) did not restore translation when poly(A)un was used to inhibit translation; however, inhibition by poly(A)150-300 was significantly reversed by this initiation factor. The reversal of poly (A)-mediated inhibition of HeLa cell mRNA translation was additive when PAB was used together with eIF-4A. Early VV mRNA translation was only slightly inhibited by poly(A)un (15%), and this inhibition was completely reversed by either PAB or eIF-4A.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3