Induction of cellular transcription factors in trigeminal ganglia of mice by corneal scarification, herpes simplex virus type 1 infection, and explantation of trigeminal ganglia

Author:

Valyi-Nagy T1,Deshmane S1,Dillner A1,Fraser N W1

Affiliation:

1. Wistar Institute, Philadelphia, Pennsylvania 19104-4268.

Abstract

In a mouse model for herpes simplex virus type 1 (HSV-1) latency in which the virus was inoculated via the eye after corneal scarification, HSV-1 replicated in corneal epithelial cells and infected the nerve cell endings. HSV-1 reached the trigeminal ganglia by fast axonal transport between 2 and 10 days postinfection (p.i.) and established a latent infection in neuronal cells or replicated and spread to nonneuronal cells. By using in situ hybridization, we showed that cellular transcription factors are stimulated by HSV-1 infection in trigeminal ganglia. This stimulation is biphasic, peaking at 1 and 3 to 4 days p.i. The first peak involves c-jun and oct-1 expression in neurons, and the second involves c-jun, c-fos, and oct-1 expression in neurons and nonneuronal cells. Corneal scarification, alone or followed by infection with UV-inactivated HSV-1, induced monophasic c-jun and oct-1 expression in some neurons of the trigeminal ganglia, with a peak at 1 day p.i. Corneal infection without prior scarification induced c-jun, c-fos, and oct-1 expression in some neuronal and nonneuronal cells of the trigeminal ganglia 2 to 9 days p.i. Explanation of ganglia from latently infected animals resulted in reactivation of the latent virus. Independently of the presence of latent HSV-1 in explanted ganglia, expression of c-fos, c-jun, and oct-1 was induced first in nonneuronal cells, peaking 6 to 10 h postexplantation, and then in neuronal cells, with a peak at 24 h after explantation when expression of viral replicative genes was first detectable. Since ocular HSV-1 infection, corneal scarification, and explantation of trigeminal ganglia all resulted in induction of expression of cellular transcription factors in ganglia, these factors may play a critical role in the permissiveness of cells for HSV-1 replication during acute infection, latency, and reactivation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3