Genetic Divergence of Human Immunodeficiency Virus Type 1 Ethiopian Clade C Reverse Transcriptase (RT) and Rapid Development of Resistance against Nonnucleoside Inhibitors of RT

Author:

Loemba Hugues1,Brenner Bluma1,Parniak Michael A.1,Ma'ayan Shlomo2,Spira Bonnie1,Moisi Daniela1,Oliveira Maureen1,Detorio Mervi1,Wainberg Mark A.1

Affiliation:

1. McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada

2. Hadassah Hospital, Jerusalem, Israel

Abstract

ABSTRACT We sequenced and phylogenetically analyzed the reverse transcriptase (RT) region of five human immunodeficiency virus type 1 isolates from treatment-naive Ethiopian émigrés to Israel. Heteroduplex mobility assays were performed to confirm the clade C status of env genomic regions. The RT sequences showed that the strains clustered phylogenetically with clade C viruses, and a KVEQ-specific motif of silent mutations (amino acids 65, 106, 138, and 161, respectively) at resistance sites was present in the polymerase region of all studied Ethiopian isolates and subtype C reference strains. In addition, many other silent mutations were observed in the clade C viruses at various resistance sites. In general, the Ethiopian isolates were more closely related genotypically to a clade C reference strain from Botswana (southern Africa) than to previously sequenced Ethiopian reference strains. Genotypic analysis showed that two Ethiopian isolates naturally harbored the mutations K70R and G190A associated with resistance to ZDV and nonnucleoside reverse transcriptase inhibitors, respectively. Phenotypic assays revealed that the K70R substitution in this context did not reduce susceptibility to ZDV, whereas the G190A substitution resulted in high-level resistance to nevirapine (NVP). Moreover, variants resistant to NVP, delavirdine (DLV), and efavirenz (EFV) were more rapidly selected at lower drug doses culture with clade C than with clade B wild-type isolates. In the case of subtype C, selection with NVP and/or EFV led to the appearance of several previously unseen mutations in RT, i.e., V106M and S98I, as well as other mutations that have been previously reported (e.g., K103N, V106A, V108I, and Y181C). After selection with DLV, a polymorphism, A62A, initially observed in the Ethiopian isolate 4762, mutated to A62V; the latter is a secondary substitution associated with multidrug resistance against nucleoside RT inhibitors. Phenotypic analysis of clade C mutants selected against NVP, DLV, and EFV revealed broad cross-resistance, particularly in regard to NVP and DLV. These findings suggest that RT genotypic diversity may influence the emergence of drug resistance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3