Reexamination of the Physiological Role of PykA in Escherichia coli Revealed that It Negatively Regulates the Intracellular ATP Levels under Anaerobic Conditions

Author:

Zhao Chunhua12,Lin Zhao12,Dong Hongjun1,Zhang Yanping1,Li Yin1

Affiliation:

1. CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China

2. University of Chinese Academy of Sciences, Beijing, China

Abstract

ABSTRACT Pyruvate kinase is one of the three rate-limiting glycolytic enzymes that catalyze the last step of glycolysis, conversion of phosphoenolpyruvate (PEP) into pyruvate, which is associated with ATP generation. Two isozymes of pyruvate kinase, PykF and PykA, are identified in Escherichia coli . PykF is considered important, whereas PykA has a less-defined role. Prior studies inactivated the pykA gene to increase the level of its substrate, PEP, and thereby increased the yield of end products derived from PEP. We were surprised when we found a pykA ::Tn 5 mutant in a screen for increased yield of an end product derived from pyruvate ( n -butanol), suggesting that the role of PykA needs to be reexamined. We show that the pykA mutant exhibited elevated intracellular ATP levels, biomass concentrations, glucose consumption, and n -butanol production. We also discovered that the pykA mutant expresses higher levels of a presumed pyruvate transporter, YhjX, permitting the mutant to recapture and metabolize excreted pyruvate. Furthermore, we demonstrated that the nucleotide diphosphate kinase activity of PykA leads to negative regulation of the intracellular ATP levels. Taking the data together, we propose that inactivation of pykA can be considered a general strategy to enhance the production of pyruvate-derived metabolites under anaerobic conditions. IMPORTANCE This study showed that knocking out pykA significantly increased the intracellular ATP level and thus significantly increased the levels of glucose consumption, biomass formation, and pyruvate-derived product formation under anaerobic conditions. pykA was considered to be encoding a dispensable pyruvate kinase; here we show that pykA negatively regulates the anaerobic glycolysis rate through regulating the energy distribution. Thus, knocking out pykA can be used as a general strategy to increase the level of pyruvate-derived fermentative products.

Funder

National High Technology Research and Development Program of China

CAS/SAFEA International Partnership Program for Creative Research Teams

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3