Increased Diversity of Arbuscular Mycorrhizal Fungi in a Long-Term Field Experiment via Application of Organic Amendments to a Semiarid Degraded Soil

Author:

del Mar Alguacil Maria1,Díaz-Pereira Elvira1,Caravaca Fuensanta1,Fernández Diego A.1,Roldán Antonio1

Affiliation:

1. CSIC—Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain

Abstract

ABSTRACT In this study, we tested whether communities of arbuscular mycorrhizal (AM) fungi associated with roots of plant species forming vegetative cover as well as some soil parameters (amounts of phosphatase and glomalin-related soil protein, microbial biomass C and N concentrations, amount of P available, and aggregate stability) were affected by different amounts (control, 6.5 kg m −2 , 13.0 kg m −2 , 19.5 kg m −2 , and 26.0 kg m −2 ) of an urban refuse (UR) 19 years after its application to a highly eroded, semiarid soil. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, single-stranded conformation polymorphism analysis, sequencing, and phylogenetic analyses. One hundred sixteen SSU rRNA sequences were analyzed, and nine AM fungal types belonging to Glomus groups A and B were identified: three of them were present in all the plots that had received UR, and six appeared to be specific to certain amendment doses. The community of AM fungi was more diverse after the application of the different amounts of UR. The values of all the soil parameters analyzed increased proportionally with the dose of amendment applied. In conclusion, the application of organic wastes enhanced soil microbial activities and aggregation, and the AM fungal diversity increased, particularly when a moderate dose of UR (13.0 kg m −2 ) was applied.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3