Effect of protein synthesis inhibitors on growth factor activation of c-fos, c-myc, and actin gene transcription.

Author:

Greenberg M E,Hermanowski A L,Ziff E B

Abstract

Stimulation of quiescent 3T3 cells with purified growth factors or of the pheochromocytoma cell line PC12 with nerve growth factor results in the rapid transient induction of c-fos, c-myc, and actin gene transcription (M.E. Greenberg and E.B. Ziff, Nature [London] 312:711-716; M.E. Greenberg, L.A. Greene, and E.B. Ziff, J. Biol. Chem. 26:14101-14110). We used protein synthesis inhibitors to investigate whether synthesis of new proteins plays a role in the rapid induction and subsequent repression of the transcription of these genes. Pretreatment of quiescent 3T3 cells with the inhibitor anisomycin before growth factor stimulation caused a superinduction of c-fos and c-myc mRNA levels upon growth factor addition. Nuclear runoff transcription analyses of 3T3 cells indicated that anisomycin potentiated c-fos, c-myc, and also actin expression at the transcriptional level, possibly by inhibiting transcriptional repression. Somewhat different results were obtained when PC12 cells were incubated with either anisomycin or cycloheximide. In PC12 cells protein synthesis inhibitors superinduced nerve growth factor activation of c-fos mRNA production but completely abolished the activation of c-myc. The results suggest that in PC12 cells c-fos transcription is activated by a protein-synthesis-independent mechanism, whereas c-myc stimulation requires new protein synthesis. The difference in the effect of anisomycin on growth factor activation of c-myc expression in 3T3 versus PC12 cells may be due to differential stringency of protein synthesis inhibition in the two cells or could reflect cell type differences in c-myc regulation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 520 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3