Notch Inhibition of E47 Supports the Existence of a Novel Signaling Pathway

Author:

Ordentlich Peter1,Lin Arthur1,Shen Chun-Pyn1,Blaumueller Chris2,Matsuno Kenji1,Artavanis-Tsakonas Spyros2,Kadesch Tom1

Affiliation:

1. Howard Hughes Medical Institute and Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6145, 1 and

2. Howard Hughes Medical Institute and Departments of Cell Biology and Biology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 065362

Abstract

ABSTRACT E47 is a widely expressed transcription factor that activates B-cell-specific immunoglobulin gene transcription and is required for early B-cell development. In an effort to identify processes that regulate E47, and potentially B-cell development, we found that activated Notch1 and Notch2 effectively inhibit E47 activity. Only the intact E47 protein was inhibited by Notch—fusion proteins containing isolated DNA binding and activation domains were unaffected—suggesting that Notch targets an atypical E47 cofactor. Although overexpression of the coactivator p300 partially reversed E47 inhibition, results of several assays indicated that p300/CBP is not a general target of Notch. Notch inhibition of E47 did not correlate with its ability to activate CBF1/RBP-Jκ, the mammalian homolog of Suppressor of Hairless, a protein that associates physically with Notch and defines the only known Notch signaling pathway in drosophila. Importantly, E47 was inhibited independently of CBF1/RPB-Jκ by Deltex, a second Notch-interacting protein. We provide evidence that Notch and Deltex may act on E47 by inhibiting signaling through Ras because (i) full E47 activity was found to be dependent on Ras and (ii) both Notch and Deltex inhibited GAL4-Jun, a hybrid transcription factor whose activity is dependent on signaling from Ras to SAPK/JNK.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3