Regulation of Protein Synthesis by Hypoxia via Activation of the Endoplasmic Reticulum Kinase PERK and Phosphorylation of the Translation Initiation Factor eIF2α

Author:

Koumenis Constantinos1,Naczki Christine1,Koritzinsky Marianne2,Rastani Sally1,Diehl Alan3,Sonenberg Nahum4,Koromilas Antonis5,Wouters Bradly G.2

Affiliation:

1. Departments of Radiation Oncology and Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157

2. Laboratory of Experimental Radiation Oncology, Department of Radiotherapy, University of Maastricht, 6200MD, Maastricht, The Netherlands

3. Abramson Family Cancer Research Institute, University of Pennsylvania Cancer Center, Philadelphia, Pennsylvania 19104

4. Department of Biochemistry, McGill University

5. Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada

Abstract

ABSTRACT Hypoxia profoundly influences tumor development and response to therapy. While progress has been made in identifying individual gene products whose synthesis is altered under hypoxia, little is known about the mechanism by which hypoxia induces a global downregulation of protein synthesis. A critical step in the regulation of protein synthesis in response to stress is the phosphorylation of translation initiation factor eIF2α on Ser51, which leads to inhibition of new protein synthesis. Here we report that exposure of human diploid fibroblasts and transformed cells to hypoxia led to phosphorylation of eIF2α, a modification that was readily reversed upon reoxygenation. Expression of a transdominant, nonphosphorylatable mutant allele of eIF2α attenuated the repression of protein synthesis under hypoxia. The endoplasmic reticulum (ER)-resident eIF2α kinase PERK was hyperphosphorylated upon hypoxic stress, and overexpression of wild-type PERK increased the levels of hypoxia-induced phosphorylation of eIF2α. Cells stably expressing a dominant-negative PERK allele and mouse embryonic fibroblasts with a homozygous deletion of PERK exhibited attenuated phosphorylation of eIF2α and reduced inhibition of protein synthesis in response to hypoxia. PERK −/− mouse embryo fibroblasts failed to phosphorylate eIF2α and exhibited lower survival after prolonged exposure to hypoxia than did wild-type fibroblasts. These results indicate that adaptation of cells to hypoxic stress requires activation of PERK and phosphorylation of eIF2α and suggest that the mechanism of hypoxia-induced translational attenuation may be linked to ER stress and the unfolded-protein response.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 575 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Translation regulation in response to stress;The FEBS Journal;2024-02-03

2. Whole-Blood Gene Expression Profile After Hypoxic-Ischemic Encephalopathy;JAMA Network Open;2024-02-02

3. Hypoxia and its effect on the cellular system;Cell Biochemistry and Function;2024-01-27

4. ER exit in physiology and disease;Frontiers in Molecular Biosciences;2024-01-18

5. Regulation of cardiac fibroblast cell death by unfolded protein response signaling;Frontiers in Physiology;2024-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3