Affiliation:
1. School of Chemistry, University of Bristol, Bristol, United Kingdom
2. Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
Abstract
ABSTRACT
Understanding airborne survival and decay of microorganisms is important for a range of public health and biodefense applications, including epidemiological and risk analysis modeling. Techniques for experimental aerosol generation, retention in the aerosol phase, and sampling require careful consideration and understanding so that they are representative of the conditions the bioaerosol would experience in the environment. This review explores the current understanding of atmospheric transport in relation to advances and limitations of aerosol generation, maintenance in the aerosol phase, and sampling techniques. Potential tools for the future are examined at the interface between atmospheric chemistry, aerosol physics, and molecular microbiology where the heterogeneity and variability of aerosols can be explored at the single-droplet and single-microorganism levels within a bioaerosol. The review highlights the importance of method comparison and validation in bioaerosol research and the benefits that the application of novel techniques could bring to increasing the understanding of aerobiological phenomena in diverse research fields, particularly during the progression of atmospheric transport, where complex interdependent physicochemical and biological processes occur within bioaerosol particles.
Funder
RCUK | Engineering and Physical Sciences Research Council
Chiesi Farmaceutici
Ministry of Defence
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献