A pair of functionally redundant yeast genes (PPZ1 and PPZ2) encoding type 1-related protein phosphatases function within the PKC1-mediated pathway.

Author:

Lee K S,Hines L K,Levin D E

Abstract

The PKC1 gene of Saccharomyces cerevisiae encodes a homolog of mammalian protein kinase C that is required for yeast cell growth. Loss of PKC1 function results in cell lysis due to an inability to remodel the cell wall properly during growth. The PKC1 gene has been proposed to regulate a bifurcated pathway, on one branch of which function four putative protein kinases that catalyze a linear cascade of protein phosphorylation culminating in the activation of the mitogen-activated protein kinase homolog, Mpk1p. Here we describe two genes whose overexpression suppress both an mpk1 delta mutation and a pkc1 delta mutation. One of these genes is identical to the previously identified PPZ2 gene. The PPZ2 gene is predicted to encode a type 1-related protein phosphatase and is functionally redundant with a closely related gene, designated PPZ1. Deletion of both PPZ1 and PPZ2 resulted in a temperature-dependent cell lysis defect similar to that observed for bck1 delta, mkk1,2 delta, or mpk1 delta mutants. However, ppz1,2 delta mpk1 delta triple mutants displayed a cell lysis defect at all temperatures. The additivity of the ppz1,2 delta defect with the mpk1 delta defect, combined with the results of genetic epistasis experiments, suggested either that the PPZ1- and PPZ2-encoded protein phosphatases function on a branch of the PKC1-mediated pathway different from that defined by the protein kinases or that they play an auxiliary role in the pathway. The other suppressor gene, designated BCK2 (for bypass of C kinase), is predicted to encode a 92-kDa protein that is rich in serine and threonine residues. Genetic interactions between BCK2 and other pathway components suggested that BCK2 functions on a common pathway branch with PPZ1 and PPZ2.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3