Chromatin and RNA Maps Reveal Regulatory Long Noncoding RNAs in Mouse

Author:

Bogu Gireesh K.1234,Vizán Pedro24,Stanton Lawrence W.56,Beato Miguel24,Di Croce Luciano247,Marti-Renom Marc A.1247ORCID

Affiliation:

1. CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain

2. Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain

3. Bioinformatics and Genomics Program, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain

4. Universitat Pompeu Fabra (UPF), Barcelona, Spain

5. Department of Biological Sciences, National University of Singapore, Singapore, Singapore

6. Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Singapore, Singapore

7. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

Abstract

ABSTRACT Discovering and classifying long noncoding RNAs (lncRNAs) across all mammalian tissues and cell lines remains a major challenge. Previously, mouse lncRNAs were identified using transcriptome sequencing (RNA-seq) data from a limited number of tissues or cell lines. Additionally, associating a few hundred lncRNA promoters with chromatin states in a single mouse cell line has identified two classes of chromatin-associated lncRNA. However, the discovery and classification of lncRNAs is still pending in many other tissues in mouse. To address this, we built a comprehensive catalog of lncRNAs by combining known lncRNAs with high-confidence novel lncRNAs identified by mapping and de novo assembling billions of RNA-seq reads from eight tissues and a primary cell line in mouse. Next, we integrated this catalog of lncRNAs with multiple genome-wide chromatin state maps and found two different classes of chromatin state-associated lncRNAs, including promoter-associated (plncRNAs) and enhancer-associated (elncRNAs) lncRNAs, across various tissues. Experimental knockdown of an elncRNA resulted in the downregulation of the neighboring protein-coding Kdm8 gene, encoding a histone demethylase. Our findings provide 2,803 novel lncRNAs and a comprehensive catalog of chromatin-associated lncRNAs across different tissues in mouse.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3