Affiliation:
1. Microbiology Division, Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario, Rosario, Argentina
2. Department of Molecular Biology and Biochemistry and Department of Chemistry, University of California, Irvine, California 92612
Abstract
ABSTRACT
Pathogenic mycobacteria contain a variety of unique fatty acids that have methyl branches at an even-numbered position at the carboxyl end and a long
n
-aliphatic chain. One such group of acids, called mycocerosic acids, is found uniquely in the cell wall of pathogenic mycobacteria, and their biosynthesis is essential for growth and pathogenesis. Therefore, the biosynthetic pathway of the unique precursor of such lipids, methylmalonyl coenzyme A (CoA), represents an attractive target for developing new antituberculous drugs. Heterologous protein expression and purification of the individual subunits allowed the successful reconstitution of an essential acyl-CoA carboxylase from
Mycobacterium tuberculosis
, whose main role appears to be the synthesis of methylmalonyl-CoA. The enzyme complex was reconstituted from the α biotinylated subunit AccA3, the carboxyltransferase β subunit AccD5, and the ε subunit AccE5 (Rv3281). The kinetic properties of this enzyme showed a clear substrate preference for propionyl-CoA compared with acetyl-CoA (specificity constant fivefold higher), indicating that the main physiological role of this enzyme complex is to generate methylmalonyl-CoA for the biosynthesis of branched-chain fatty acids. The α and β subunits are capable of forming a stable α6-β6 subcomplex but with very low specific activity. The addition of the ε subunit, which binds tightly to the α-β subcomplex, is essential for gaining maximal enzyme activity.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献