Affiliation:
1. Department of Biology, University of Konstanz, Federal Republic of Germany.
Abstract
Trehalose metabolism in Escherichia coli is complicated by the fact that cells grown at high osmolarity synthesize internal trehalose as an osmoprotectant, independent of the carbon source, although trehalose can serve as a carbon source at both high and low osmolarity. The elucidation of the pathway of trehalose metabolism was facilitated by the isolation of mutants defective in the genes encoding transport proteins and degradative enzymes. The analysis of the phenotypes of these mutants and of the reactions catalyzed by the enzymes in vitro allowed the formulation of the degradative pathway at low osmolarity. Thus, trehalose utilization begins with phosphotransferase (IITre/IIIGlc)-mediated uptake delivering trehalose-6-phosphate to the cytoplasm. It continues with hydrolysis to trehalose and proceeds by splitting trehalose, releasing one glucose residue with the simultaneous transfer of the other to a polysaccharide acceptor. The enzyme catalyzing this reaction was named amylotrehalase. Amylotrehalase and EIITre were induced by trehalose in the medium but not at high osmolarity. treC and treB encoding these two enzymes mapped at 96.5 min on the E. coli linkage map but were not located in the same operon. Use of a mutation in trehalose-6-phosphate phosphatase allowed demonstration of the phosphoenolpyruvate- and IITre-dependent in vitro phosphorylation of trehalose. The phenotype of this mutant indicated that trehalose-6-phosphate is the effective in vivo inducer of the system.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Reference31 articles.
1. Optimal conditions for the mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine in Escherichia coli K12;Adelberg E. A.;Biochem. Biophys. Res. Commun.,1965
2. Bachmann B. J. 1987. Linkage map of Escherichia coli K-12 edition 7 p. 807-876. In F. C. Neidhardt J. L. Ingraham K. B. Low B. Magasanik M. Schaechter and H. E. Umbarger (ed.) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology Washington D.C.
3. Chromosomal location of genes governing the trehalose utilization in Escherichia coli K-12;Becerra de Lares L.;Mol. Gen. Genet.,1977
4. Properties of cyclic AMPindependent gene activator proteins of Escherichia coli;Blazy B.;J. Biol. Chem.,1986
5. Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions;Boos W.;J. Biol. Chem.,1987
Cited by
136 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献