Identification of phosphate starvation-inducible genes in Escherichia coli K-12 by DNA sequence analysis of psi::lacZ(Mu d1) transcriptional fusions

Author:

Metcalf W W1,Steed P M1,Wanner B L1

Affiliation:

1. Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.

Abstract

Twenty-four independent phosphate starvation-inducible (psi) transcriptional fusions made with Mu d1(lacZbla) were analyzed by sequencing the psi::lacZ(Mu d1) chromosomal junctions by using DNAs amplified with the polymerase chain reaction or mini-Mu cloning. Our DNA sequence analysis showed that the MuR DNA in Mu d1 has an unexpected structure that is comprised of 104 bases of MuR DNA in the form of a large inverted repeat, which we denoted Mu d1-R. Also, Mu d1s in the phoA and phn (psiD) loci of the phosphate regulon showed regional specificities for the insertion sites despite the randomness of Mu d1 insertions into the genome as a whole. Gene products or open reading frames were identified for seven unknown psi::lacZ(Mu d1) transcriptional fusions by searching DNA data bases with the sequences adjacent and upstream of the Mu d1s. One psiC::lacZ(Mu d1) lies in the ugpB gene of the ugpBAEC operon, which encodes a periplasmic sn-glycerol-3-phosphate-binding protein; two psiQ::lacZ(Mu d1)s lie in the gltB gene, and one psiQ::lacZ(Mu d1) lies in the gltD gene of the gltBDF operon, encoding the large and small subunits of glutamate synthase, respectively; and the psi-51::lacZ(Mu d1) lies in the glpB gene of the glpABC operon, which codes for the anaerobically regulated glycerol-3-phosphate dehydrogenase. psiE and psiF::lacZ(Mu d1)s lie in uncharacterized open reading frames near the xylE and phoA genes, respectively. Six other psi::lacZ(Mu d1)s lie in yet unreported Escherichia coli sequences.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3