Switching the Substrate Specificity of the Two-Component NS2B-NS3 Flavivirus Proteinase by Structure-Based Mutagenesis

Author:

Shiryaev Sergey A.1,Ratnikov Boris I.1,Aleshin Alexander E.1,Kozlov Igor A.2,Nelson Nicholas A.2,Lebl Michal2,Smith Jeffrey W.1,Liddington Robert C.1,Strongin Alex Y.1

Affiliation:

1. Burnham Institute for Medical Research, La Jolla, California

2. Illumina, Inc., San Diego, California

Abstract

ABSTRACT The flavivirus NS2B-NS3(pro)teinase is an essential element in the proteolytic processing of the viral precursor polyprotein and therefore a potential drug target. Recently, crystal structures and substrate preferences of NS2B-NS3pro from Dengue and West Nile viruses (DV and WNV) were determined. We established that the presence of Gly-Gly at the P1′-P2′ positions is optimal for cleavage by WNV NS3pro, whereas DV NS3pro tolerates well the presence of bulky residues at either P1′ or P2′. Structure-based modeling suggests that Arg 76 and Pro 131 -Thr 132 limit the P1′-P2′ subsites and restrict the cleavage preferences of the WNV enzyme. In turn, Leu 76 and Lys 131 -Pro 132 widen the specificity of DV NS3pro. Guided by these structural models, we expressed and purified mutant WNV NS2B-NS3pro and evaluated cleavage preferences by using positional scanning of the substrate peptides in which the P4-P1 and the P3′-P4′ positions were fixed and the P1′ and P2′ positions were each randomized. We established that WNV R76L and P131K-T132P mutants acquired DV-like cleavage preferences, whereas T52V had no significant effect. Our work is the first instance of engineering a viral proteinase with switched cleavage preferences and should provide valuable data for the design of optimized substrates and substrate-based selective inhibitors of flaviviral proteinases.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3