Affiliation:
1. State Key Laboratory of Marine Environmental Sciences at Xiamen University, Xiamen 361005, People's Republic of China
Abstract
ABSTRACT
The majority of marine dissolved organic carbon (DOC) is resistant to biological degradation and thus can remain in the water column for thousands of years, constituting carbon sequestration in the ocean. To date the origin of such recalcitrant DOC (RDOC) is unclear. A recently proposed conceptual framework, the microbial carbon pump (MCP), emphasizes the microbial transformation of organic carbon from labile to recalcitrant states. The MCP is concerned with both microbial uptakes and outputs of DOC compounds, covering a wide range from gene to ecosystem levels. In this minireview, the ATP binding cassette (ABC) transporter is used as an example for the microbial processing of DOC at the genetic level. The compositions of the ABC transporter genes of the two major marine bacterial clades
Roseobacter
and SAR11 demonstrate that they have distinct patterns in DOC utilization:
Roseobacter
strains have the advantage of taking up carbohydrate DOC, while SAR11 bacteria prefer nitrogen-containing DOC. At the ecosystem level, bacterially derived RDOC based on
d
-amino acid biomarkers is reported to be responsible for about a quarter of the total marine RDOC pool. Under future global warming scenarios, partitioning of primary production into DOC could be enhanced, and thus the MCP could play an even more important role in carbon sequestration by the ocean. Joint efforts to study the MCP from multiple disciplines are required to obtain a better understanding of ocean carbon cycle and its coupling with global change.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献