PA-824 Exhibits Time-Dependent Activity in a Murine Model of Tuberculosis

Author:

Ahmad Zahoor,Peloquin Charles A.,Singh Rajendra P.,Derendorf Hartmut,Tyagi Sandeep,Ginsberg Ann,Grosset Jacques H.,Nuermberger Eric L.

Abstract

ABSTRACTPA-824 is one of two nitroimidazoles in phase II clinical trials to treat tuberculosis. In mice, it has dose-dependent early bactericidal and sterilizing activity. In humans with tuberculosis, PA-824 demonstrated early bactericidal activity (EBA) at doses ranging from 200 to 1,200 mg per day, but no dose-response effect was observed. To better understand the relationship between drug exposure and effect, we performed a dose fractionation study in mice. Dose-ranging pharmacokinetic data were used to simulate drug exposure profiles. Beginning 2 weeks after aerosol infection withMycobacterium tuberculosis, total PA-824 doses from 144 to 4,608 mg/kg were administered as 3, 4, 8, 12, 24, or 48 divided doses over 24 days. Lung CFU counts after treatment were strongly correlated with the free drugT>MIC(R2= 0.87) and correlated with the free drug AUC/MIC (R2= 0.60), but not with the free drugCmax/MIC (R2= 0.17), whereT>MICis the cumulative percentage of the dosing interval that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions and AUC is the area under the concentration-time curve. When the data set was limited to regimens with dosing intervals of ≤72 h, both theT>MICand the AUC/MIC values fit the data well. Free drugT>MICof 22, 48, and 77% were associated with bacteriostasis, a 1-log kill, and a 1.59-log kill (or 80% of the maximum observed effect), respectively. Human pharmacodynamic simulations based on phase I data predict 200 mg/day produces free drugT>MICvalues near the target for maximal observed bactericidal effect. The results support the recently demonstrated an EBA of 200 mg/day and the lack of a dose-response between 200 and 1,200 mg/day.T>MIC, in conjunction with AUC/MIC, is the parameter on which dose optimization of PA-824 should be based.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3