Discovery of a Small-Molecule Inhibitor of β-1,6-Glucan Synthesis

Author:

Kitamura Akihiro1,Someya Kazuhiko1,Hata Masato1,Nakajima Ryohei1,Takemura Makoto1

Affiliation:

1. R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan

Abstract

ABSTRACT It is possible that antifungal drugs with novel modes of action will provide favorable options to treat fungal infections. In the course of our screening for antifungal compounds acting on the cell wall, a pyridobenzimidazole derivative with unique activities, named D75-4590, was discovered. During treatment of Saccharomyces cerevisiae with D75-4590, (i) incorporation of [ 14 C]glucose into the β-1,6-glucan component was selectively reduced, (ii) proteins released from the cell had lost the β-1,6-glucan moiety, and (iii) cells tended to clump, resulting in impaired cell growth. Genetic analysis of a D75-4590-resistant mutant of S. cerevisiae indicated that its primary target was Kre6p, which is considered to be one of the β-1,6-glucan synthases. These results strongly suggest that D75-4590 is a specific inhibitor of β-1,6-glucan synthesis. D75-4590 showed potent activities against various Candida species. It inhibited hyphal elongation of C. albicans as well. KRE6 is conserved in various fungi, but no homologue has been found in mammalian cells. These lines of evidence indicate that D75-4590 is a promising lead compound for novel antifungal drugs. To our knowledge, this is the first report of a β-1,6-glucan inhibitor.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3