Premature chromosome condensation is induced by a point mutation in the hamster RCC1 gene

Author:

Uchida S1,Sekiguchi T1,Nishitani H1,Miyauchi K1,Ohtsubo M1,Nishimoto T1

Affiliation:

1. Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan.

Abstract

At the nonpermissive temperature, premature chromosome condensation (PCC) occurs in tsBN2 cells derived from the BHK cell line, which can be converted to the Ts+ phenotype by the human RCC1 gene. To prove that the RCC1 gene is the mutant gene in tsBN2 cells, which have RCC1 mRNA and protein of the same sizes as those of BHK cells, RCC1 cDNAs were isolated from BHK and tsBN2 cells and sequenced to search for mutations. The hamster (BHK) RCC1 cDNA encodes a protein of 421 amino acids homologous to the human RCC1 protein. In a comparison of the base sequences of BHK and BN2 RCC1 cDNAs, a single base change, cytosine to thymine (serine to phenylalanine), was found in the 256th codon of BN2 RCC1 cDNA. The same transition was verified in the RCC1 genomic DNA by the polymerase chain reaction method. BHK RCC1 cDNA, but not tsBN2 RCC1 cDNA, complemented the tsBN2 mutation, although both have the same amino acid sequence except for one amino acid at the 256th codon. This amino acid change, serine to phenylalanine, was estimated to cause a profound structural change in the RCC1 protein.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference45 articles.

1. Principles that govern the folding of protein chains;Anfinsen C. B.;Science,1973

2. Temperature-sensitive mutations in animal cells;Basilico C.;Adv. Cancer Res.,1977

3. Western blotting;Burnette W. N.;Anal. Biochem.,1981

4. Expression of recessive alleles by chromosomal mechanism in retinoblastoma;Cavenee W. K.;Nature (London),1983

5. Empirical predictions of protein conformation. Annu;Chou P. Y.;Rev. Biochem.,1978

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3