The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein.
-
Published:1989-05
Issue:5
Volume:9
Page:2124-2132
-
ISSN:0270-7306
-
Container-title:Molecular and Cellular Biology
-
language:en
-
Short-container-title:Mol. Cell. Biol.
Author:
McGuire E A,Hockett R D,Pollock K M,Bartholdi M F,O'Brien S J,Korsmeyer S J
Abstract
Interchromosomal translocations within lymphoid neoplasms frequently involve the antigen receptor genes. We cloned the breakpoints of the t(11;14)(p15;q11) in a CD3-negative T-cell acute lymphoblastic leukemia cell line (RPMI 8402) in order to identify new genes potentially involved in T-cell neoplasia. An extensive comparison of both breakpoints and their germ line counterparts indicated that an inadvertant recombinase-mediated break at chromosome segment 11p15 recombined with the delta T-cell receptor at 14q11. The derivative 11 breakpoint resembles a coding joint in which 11p15 rather than a variable region was introduced 5' to a D delta 1 D delta 2 J delta 1 intermediate rearrangement. Conversely, the derivative 14 breakpoint corresponds to a signal joint between the 5' heptamer-spacer-nonamer recombinational signal of D delta 1 and an isolated heptamer at 11p15. Multiple, apparently distinct transcripts were found flanking both breakpoints of 8402. RNAs of 3.5, 4.4, 1.4, and 8.0 kilobases originating from either side of the derivative 14 breakpoint were highly expressed in 8402 compared with other cells. This suggests that this translocation deregulated multiple genes and provides the opportunity to assess any multifactorial contribution they may have to malignancy. We cloned and sequenced several cDNAs representing the 1.4-kilobase transcript (termed Ttg-1 [T-cell translocation gene 1]) from an 8402 library. The predicted protein of 156 amino acids contained two internal repeats which could potentially form zinc fingers.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
230 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献