The Response Regulator CpxR Directly Regulates Expression of Several Legionella pneumophila icm/dot Components as Well as New Translocated Substrates

Author:

Altman Efrat1,Segal Gil1

Affiliation:

1. Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel

Abstract

ABSTRACT Legionella pneumophila has been shown to utilize the icm/dot type IV secretion system for pathogenesis. This system was shown to be composed of icm / dot complex components and accessory proteins, as well as a large number of translocated substrates. Bioinformatic analysis of the regulatory regions of all the genes revealed that several icm / dot genes, as well as two genes encoding icm / dot translocated substrates, contain the conserved CpxR regulatory element, a regulator that has been shown previously to control the expression of the icmR gene. An experimental analysis, which included a comparison of gene expression in a L. pneumophila wild-type strain and gene expression in a cpxR deletion mutant, construction of mutants with mutations in the CpxR conserved regulatory elements, controlled expression studies, and mobility shift assays, demonstrated the direct relationship between the CpxR regulator and the expression of the genes. Furthermore, genomic analysis identified nine additional genes that contain a putative CpxR regulatory element; five of these genes (two legA genes and three ceg genes) were suggested previously to be putative icm / dot translocated substrates. The three ceg genes identified, which were shown previously to contain a putative PmrA regulatory element, were found here to be regulated by both CpxR and PmrA. The other six genes (two legA genes and four new genes products were found to be regulated by CpxR. Moreover, using the CyaA translocation assay, these nine gene products were found to be translocated into host cells in an Icm/Dot-dependent manner. Our results establish that the CpxR regulator is a fundamental regulator of the icm / dot type IV secretion system in L. pneumophila .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3