Roles of AtpI and Two YidC-Type Proteins from Alkaliphilic Bacillus pseudofirmus OF4 in ATP Synthase Assembly and Nonfermentative Growth

Author:

Liu Jun1,Hicks David B.1,Krulwich Terry A.1

Affiliation:

1. Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, USA

Abstract

ABSTRACT AtpI, a membrane protein encoded by many bacterial atp operons, is reported to be necessary for c -ring oligomer formation during assembly of some ATP synthase complexes. We investigated chaperone functions of AtpI and compared them to those of AtpZ, a protein encoded by a gene upstream of atpI that has a role in magnesium acquisition at near-neutral pH, and of SpoIIIJ and YqjG, two YidC/OxaI/Alb3 family proteins, in alkaliphilic Bacillus pseudofirmus OF4. A strain with a chromosomal deletion of atpI grew nonfermentatively, and its purified ATP synthase had a c -ring of normal size, indicating that AtpI is not absolutely required for ATP synthase function. However, deletion of atpI , but not atpZ , led to reduced stability of the ATP synthase rotor, reduced membrane association of the F 1 domain, reduced ATPase activity, and modestly reduced nonfermentative growth on malate at both pH 7.5 and 10.5. Both spoIIIJ and yqjG , but not atpI or atpZ , complemented a YidC-depleted Escherichia coli strain. Consistent with such overlapping functions, single deletions of spoIIIJ or yqjG in the alkaliphile did not affect membrane ATP synthase levels or activities, but functional specialization was indicated by YqjG and SpoIIIJ showing respectively greater roles in malate growth at pH 7.5 and 10.5. Expression of yqjG was elevated at pH 7.5 relative to that at pH 10.5 and in Δ spoIIIJ strains, but it was lower than constitutive spoIIIJ expression. Deletion of atpZ caused the largest increase among the mutants in magnesium concentrations needed for pH 7.5 growth. The basis for this phenotype is not yet resolved.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3