Caspase Cleavage of the Nonstructural Protein NS1 Mediates Replication of Aleutian Mink Disease Parvovirus

Author:

Best Sonja M.1,Shelton Janie F.1,Pompey Justine M.1,Wolfinbarger James B.1,Bloom Marshall E.1

Affiliation:

1. Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840

Abstract

ABSTRACT Virus-induced apoptosis of infected cells can limit both the time and the cellular machinery available for virus replication. Hence, many viruses have evolved strategies to specifically inhibit apoptosis. However, Aleutian mink disease parvovirus (ADV) is the first example of a DNA virus that not only induces apoptosis but also utilizes caspase activity to facilitate virus replication. To determine the function of caspase activity during ADV replication, virus-infected cell lysates or purified ADV proteins were incubated with various purified caspases. Caspases cleaved the major nonstructural protein of ADV (NS1) at two caspase recognition sequences, whereas ADV structural proteins could not be cleaved. Importantly, the NS1 products could be identified in ADV-infected cells but were not present in infected cells pretreated with caspase inhibitors. By mutating putative caspase cleavage sites (D to E), we mapped the two cleavage sites to amino acid residues NS1:227 (INTD↓S) and NS1:285 (DQTD↓S). Replication of ADV containing either of these mutations was reduced 10 3 - to 10 4 -fold compared to that of wild-type virus, and a construct containing both mutations was replication defective. Immunofluorescent studies revealed that cleavage was required for nuclear localization of NS1. The requirement for caspase activity during permissive replication suggests that limitation of caspase activation and apoptosis in vivo may be a novel approach to restricting virus replication.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3